Showing posts with label mammals. Show all posts
Showing posts with label mammals. Show all posts

Thursday, June 2, 2011

A Grey Squirrel Sciurus carolinensis

I am an amateur naturalist trying to learn something about everything living in my garden.

Photo 1 (strictly I took this particular photo in a local park) shows a sporadic visitor to my garden, and my third mammal, the Grey Squirrel (Sciurus carolinensis).

To learn something about them I have been reading Squirrels by Jessica Holm (Whittet Books).

Together with the Red (Sciurus vulgaris) the Grey is one of two species of squirrel found in Britain. It is a North American import. The first pair was released by a Mr Broklehurst in the county of Cheshire in 1876. Famously, the Grey has thrived (indeed, they are legally classified as vermin), whilst the once common Red is today a protected species clinging on in a handful of isolated locations (I have only ever seen one myself- in Cumbria).

Why the populations have changed in this way is not entirely understood. It is often said (indeed, before reading Dr. Holt's book I too had lazily assumed) that the Greys have 'driven' the Reds from their 'territories'. This is false on two counts however: Firstly, in woodlands where both have been studied together its found that Reds and Greys do not show any undue aggression towards one another. Secondly (and a surprise to me) squirrels aren't territorial animals. The life of a squirrel is a 'roaming' one (though generally confined to some home range of a kilometer or so). Rather than all-out interspecies hostility, it seems that the Red population may have declined as a combination of diseases passed on by the invaders and because the smaller size of the Reds means they are less able to gather food in areas where the more avaricious Greys are eating much of it up. Totally, more study is necessary however.

A few additional things of interest I picked up from my reading are firstly that Reds and Greys normally carry distinct species of flea (Monopsyllus sciuronum for the Reds, Orchopeas howardii for the Grey). Mother Nature is nothing if not an expert in specialisation! Secondly, watching a squirrel work through a pile of nuts, it will sometimes be observed to discard one without opening it. These turn out to be bad nuts with withered kernels. How the squirrel determines this with the nut still in its shell is rather impressive. It weighs them in its paws. A neat party trick!

To end, the literature abounds with Squirrel poems and Beatrix Potter quotes, but for me there is only one winner of the prize for top squirrel literary moment:

The squirrels pulled Veruca to the ground and started carrying her across the floor.
"My goodness she is a bad nut after all" said Mr Wonka, "Her head must have sounded quite hollow" [...]
"Where are they taking her?" shrieked Mrs Salt.
"She's going where all the other bad nuts go" said Mr Willy Wonka. "Down the rubbish chute."
[Roald Dahl, Charlie and the Chocolate Factory]

Thursday, September 27, 2007

European mole Talpa europeae

I am an amateur naturalist trying to identify everything living in my garden.

Typical isn't it, you wait thirty-seven blog postings for a garden mammal, and then two come along at once. After my triumph of badger photography, ladies and gentlemen I present photo 1: the European mole (Talpa europeae). As may be obvious from the photo, though mole hills have periodically appeared in my garden for a number of years, I (in common with most people) have never actually seen a live example of this elusive little creature that lives almost its entire life underground hunting for worms and insects.

To learn something about moles I have been reading The Mole (Kenneth Mellane, Collins New Naturalist). Having been written over thirty years ago (1971) I expected the information in the book to have dated somewhat, and indeed the extensive treatment of the methods employed by mole exterminators and the suggested method of tracking moles by fitting rings of radioactive Cobalt-60 (!) to their tails might less readily find their way into a textbook aimed at amateur naturalists today. Interestingly however, though my searches have been far from exhaustive, turning to the internet I've yet to come across any very detailed site describing the ecology of this most secretive of British mammals (can anyone point me to one?).

From Dr Mellane's book I learn that the average male mole comes in at 14.3cm, 110g with females marginally smaller. European moles are not entirely blind, though their eyes are tiny and mostly hidden by their fur (which, I learn, has no particular 'lie' i.e. it responds equally to being stroked in either direction, unlike the fur of, say, cats as pet owners will know). Moles have a highly developed sense of touch - their snout being covered with thousands of tiny, sensitive 'pimples' known as Eimer's organs. I have to confess at first reading I was highly sceptical of the suggestion in the book that:

"it is tempting to think that moles have other and more unusual senses...[finding] its way in its burrows by some sort of "radar" using some radiation we do not experience"

Subsequently however I've come across the NSF Digimorph site, where I read:

"some authors have suggested that the nose of Talpa may be sensitive to electrical or magnetic signals"

Can anyone comment more concretely on whether moles do or don't have senses of this nature?

Apart from a short time spent mating, moles are, as Dr Mellane puts it:

"aggressive, quarrelsome and solitary"

The Arkive site explains that female moles are the only mammals to contain vestigial testes ('Ovotestes'). These produce large amounts of testosterone and it seems this may account for the tendency of female moles to be just as aggressively territorial as males.

Gestation in moles lasts four weeks. Birth is in late April in the South of England, and the young start to leave the nest (one of the few times they may travel above ground) after about a month to establish territories of their own.

Of course, the most widely recognised feature of moles is their hills. They've certainly made quite a mess of my normally immaculate (hem, hem) lawn as photo 2 shows (does anyone know of a humane way of getting rid of moles incidentally?). Moles are extremely skillful tunnelers: burrows may be on multiple levels and in experiments in which whole sections of burrows where removed, Dr Mellane found that they will even pack together balls of clay to reconstruct a tunnel arch. Moles work and sleep in 3 hour shifts (3 awake, 3 asleep etc.) and Dr Mellane likens the effort a mole makes in pushing up the soil in a molehill to a human miner moving 12 tons of soil in an hour.

Occasionally moles may construct giant mole-hills known as 'fortresses' comprising hundreds of kilos of soil. The suggestion seems to be that fortresses are built to raise a brood chamber above the water-level in flood-prone areas. Dr Mellane disputes this however, and asserts that their real purpose remains a mystery.

Finally, I warned last time of the perils of listening to badgers! The lesson from King William III of England's death is that moles can be just as bad for your health. In 1702, William was thrown from his horse when it tripped over a mole hill. William broke his collarbone and subsequently died from complications. I shall be watching where I tread when I next time mow the lawn!

Thursday, September 20, 2007

The European Badger Meles meles

I am an amateur naturalist trying to identify everything that lives in my garden.

Photograph 1 may not be about to win too many wildlife photography competitions (!) - but after more than thirty postings describing the creatures that visit my garden, I am pleased to announce my first mammal: the European Badger (Meles meles).

I must confess that strictly I have not actually seen said badger(s) in my garden, but on the basis that: i) I do not know what else, besides a badger digging for worms, could have left the holes in my lawn in shown in photos 1 and 2 ii) it's not uncommon to see dead badgers on the roads within a mile of my house iii) lying in bed at night I'm fairly certain I've heard the 'wailing' of badgers (very helpfully, the good people of the Department of Zoology at Oxford University have placed a detailed series of badger-call audio files on their site) and iv) my neighbour has seen badgers in his garden - I'm reasonably confident to assert their presence.

Being one of the UK's few, large, wild mammals so much has been written about badgers (not least with regard to the UK government's controversial policy of culling them on the basis of their supposed ( but strongly-contested) link to the spread of tuberculosis in cattle) that it seems almost pointless for me to add more. Since my own purpose in penning my blog is to fix in my own mind some knowledge of my garden's natural history however, I'll press on:

To learn something about badgers I have been reading The Badger (E. Neal, The New Naturalist Monographs, Collins, 3rd ed.). With the greatest respect to the author, having been written in the 1940's, I did find some of the anecdotes just a little dated, but nevertheless came away with a much improved knowledge of this most secretive of mammals.

The European badger is spread across Europe and Asia from Britain to Japan. It is part of the Mustelidae family of mammals which includes weasels, otters and wolverines (none of the latter in the UK). An old, common name for the badger is Brock and in the UK it's not uncommon to find towns and villages with names like Brockhampton and Brockenhurst.

Badgers have the dentition of carnivores - large canines and extremely powerful articulated jaws - but their diet is basically omnivorous. In his book Dr Neal describes his studies into the stomach contents of badgers and reports finding, amongst other things: rabbit bones and fur; grass; beech nuts; shoots of Dog's Mercury (Mercurialis perennis); 45 beetles of the genus Geotrupes; large numbers of earthworms; four hedgehogs (but only 3 spines swallowed); and a stomach full of wasp larvae and comb.

Badgers are communal, and live in underground dens called sets. Set tunnels can extend for more than a hundred metres into hillsides. In Dr Neal's book he describes his studies of the badger population in a 45-acre wood: Conigre Wood near Rendcomb (UK). Despite the many changes to the British countryside since the 1940's I was delighted to find the 2007 picture of Conigre Wood on Google Earth is essentially identical to the black and white photo in Dr Neal's book (Conigre Wood is the large slanted " j" - minus the top dot - in the centre of photo 3) (as here, I understand it's o.k. for me to use Google Earth images). In the book Dr Neal reports there being five badger sets in the wood of which two were large and regularly used. In all, the woodland supported 11 badgers in 1945. I wonder how many are there today?

One of the more remarkable facts I discovered from reading Dr Neal's books is that for badgers there is a very considerable delay between conception (i.e. the act of mating and a female badger egg becoming fertilized) and "pregnancy-proper" (my phrase) when the fertilized egg becomes implanted in the uterine wall. For three months or more following fertilization, the egg simply 'floats around' inside the female as a so-called blastocyst. Only once the blastocyst becomes implanted in the uterine wall does the embryo start "serious" development, with birth occurring 7-8weeks later. The result of this delay is that although a male and female may mate in Spring, birth does not normally occur until December or January. Badger cubs are weaned after 12weeks and will normally leave the parental set within a year.

Finally, for those of you tempted to listen out for the calls of badgers, you may want to take steps to ensure there are no owls in your neighbourhood! According to a manuscript from 1800 quoted in Dr. Neal's book:

Should one hear a badger call
And then an ullot [owl] cry,
Make thy peace with God, good soul,
For shortly thu shalt die.

Ear-plugs in bed from now on ?!